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Abstract 
 
The paper is concerned with a physically nonlinear piezoelectric material behavior and its 
applications to practical problems.  A survey of work dealing with the phenomenon is 
included in the introduction.  Subsequently, the emphasis is on the analysis of vibrations 
of piezoelectric rods where a rather unique situation is observed, i.e. the response of a 
nonlinear system can be modeled by linear equations of motion.  The solutions are 
obtained analytically by the Lagrange equation and by the Generalized Galerkin 
procedure.  Applying either of these methods, the study of forced vibrations of a 
physically nonlinear piezoelectric rod subject to a periodic electric field in the axial 
direction is reduced to the analysis of a system of nonhomogeneous Mathieu-Hill 
equations.  In the particular case where the interaction between axial and radial vibrations 
can be neglected, the closed-form solution for the former vibrations is obtained in the 
paper and it is shown that both the Lagrange equation and the Generalized Galerkin 
procedure yield identical results.  Numerical examples presented in the paper elucidate 
the significance of physically nonlinear effects that should not be arbitrary disregarded in 
design, without a proper evidence.  
 
Introduction 
 
The well known physically linear relationships between the tensors of stress and strain 
and the vectors of electric field and electric displacement for piezoelectric materials are 
applicable to a particular case where nonlinear effects are negligible.  While geometric 
nonlinearity can be partially incorporated into these equations by an appropriate choice of 
the strain-displacement relationships, neither this nonlinearity nor physical nonlinearity 
of the material are fully reflected in the linear version of the constitutive equations.  A 
general form of constitutive equations accounting for nonlinear products of the 
components of the strain vector (geometrically nonlinear effect) and physically nonlinear 
terms has been derived and published (see for example, Maugin et al., 1992).  However, 
the  complexity of these equations as well as the lack of experimental data on the 
coefficients at the nonlinear terms and the difficulty involved in their evaluation 
prevented a wide acceptance of nonlinear constitutive equations in design and practical 
applications.  This makes it important to elucidate a relative contribution of geometrically 
and physically nonlinear terms and to assess both the necessity of their incorporation in 
the analysis and their relative qualitative and quantitative effects on the solution. 
 
Early studies of the effects of stress and electric fields on the response of piezoelectric 
materials were conducted by Berlington and Krueger (1959), Woolett and Leblanc 
(1973), Krueger (1954, 1967, 1968a, 1968b), Brown and McMahon, (1962, 1965) and 
Fritz (1978).  A nonlinear nature of the problem is evident in these investigations.  The 
theoretical formulation was also developed by Tiersten (1971) who later applied it to the 
problems of thin and membrane piezoelectric plates subjected to high electric fields 
(Tiersten, 1993a, b).  Other derivations of physically nonlinear equations were published 
by Nakagawa et al. (1973) and Cho and Yamanouchi (1987). 
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Notably, a physically nonlinear behavior of piezoelectric materials is also reflected in the 
hysteresis or butterfly loops in the electric field – strain or strain-stress planes.  Such 
loops and relevant nonlinear phenomena were described and discussed by a number of 
authors (Chen and Montgomery, 1980; Chen and Madsen, 1981; Bassiouny et al., 1988; 
Leigh and Zimmerman, 1991; Ge and Jouaneh, 1995, etc.) 
 
Beige and Schmidt (1982) and Beige (1983) included higher-order electric and elastic 
terms in their studies of longitudinal vibrations of a plate with a 31 piezoelectric effect.  
This effect has also been studied by von Wagner and Hagedorn (2002) for piezoelectric 
beams.  Other studies of von Wagner (2003, 2004) and von Wagner and Hagedorn (2003) 
were concerned with physical nonlinearity in 33-piezoelectrics. The work of 
Chattopadhyay et al. (1999) employed nonlinear constitutive equations incorporating a 
cubic nonlinearity for the electric field to analyze helicopter blades (modeled by 
composite box beams).  The subsequent work accounted for transverse shear 
deformability of monocoque and sandwich plates combined with the nonlinear 
piezoelectric effect of embedded or mounted sensors and actuators (Thornburgh and 
Chattopadhyay, 2001).   
 
Among recent studies that attempt to implicitly account for nonlinearities by using 
variable coefficients in linear constitutive relationships one can mention the paper by 
Sherritt et al. (1996) where the piezoelectric coefficient 33d  of lead zirconate titanate 
ceramics was shown dependent on stress as well as being a function of temperature and 
frequency.  In particular, a step stress caused a time dependent variation in this 
coefficient that was attributed to a slow movement of 90o domain walls in the material.  
Further studies of the effects of various factors on the coefficients in linear constitutive 
equations for piezoelectrics were conducted by the same group at the Royal Military 
College of Canada.  In particular, experimental data elucidating these phenomena was 
presented in the papers of Wiederick et al. (1996) and Sherrit et al. (1996, 1997).  In these 
studies, it was shown that both the piezoelectric constants as well as the permittivity are 
nonlinear functions of the applied electric field.  The experimental approach employed to 
measure piezoelectric constants was based on the so-called optical lever used to measure 
the strains in the 1 or 3 directions as functions of the applied electric field in the 3-
direction.  It was also observed in these studies that the piezoelectric coefficients increase 
almost linearly with the stress.  The nonlinear contributions became much more 
pronounced at the applied electric field exceeding 500-1000 V/mm.   
 
The intrinsic and extrinsic contributions to the piezoelectric effect were discussed by 
Yang et al. (2000).  While the intrinsic property is typical for a single domain crystal, the 
contributions associated with the presence of multiple crystals are usually extrinsic.  Such 
contributions are dominant in soft piezoceramics where they are associated with domain 
switching under the influence of high electric fields (Mukherjee et al., 2001).  In general, 
it has been observed that piezoelectric coefficients are nonlinear functions of the applied 
compressive stress.  As follows from this paper and from other publications of the same 
group (see for example, Ren et al., 2000), piezoelectric coefficients 153331 ,, ddd  typically 
increase with the electric field, particularly in soft piezoceramics, while an increase in the 
frequency results in a very small decrease of these coefficients. 
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Wang and Carman (1995) showed in their experiments that both the coefficient of 
thermal expansion as well as the piezoelectric coefficient 31d are affected by a cryogenic 
temperature.  Moreover, it was shown that 31d is affected by the magnitude of strain.  In 
addition, the electric field was recently shown to affect the elastic modulus (Chaplya and 
Carman, 2002).   
 
Barrett (1995) showed a nonlinear relationship between the strain in the piezoelectric 
(PZT-5H) actuator and the applied electric field.  The nonlinearity was observed, even 
though the electric field considered in this paper was limited to less than 500 V/mm. 
 
Bert and Birman (1998) proved that both the stress and temperature affect the coefficient 

31d  in a one-dimensional problem.  In addition, they characterized the variations of the 
coefficient of thermal expansion with the stress and electric field.  For example, it was 
shown that CTE of PZT-4 increases by 10% if the stress reaches the static strength value, 
and even more remarkable, CTE of PZT-5A increased by 15.8% under the electric field 
equal to 2,000 V/mm.  This work was further expanded by Bert and Birman (1999) to 
two-dimensional and three-dimensional cases.   
  
Joshi (1992) derived physically nonlinear constitutive equations for piezoceramics by the 
assumption that material constants are independent of the magnitude of stress or electric 
field.  This solution was obtained using the thermodynamic Gibbs potential and retaining 
the second-order terms in the total differentials of dependent variables (strains, electric 
flux density, and entropy).  Numerical examples were not presented in this paper making 
it impossible to estimate a relative contribution of various terms in the physically 
nonlinear formulation.  An important contribution was related to accounting for the 
electrostrictive and elastostrictive effects.  The constitutive equations for a physically 
nonlinear material derived by Maugin et al. (1992) based on the analysis of the volume 
energy, i.e. the energy density of an electroelastic solid, are similar to equations of Joshi 
(1992). 
 
A nonlinear relationship between the deflection of the tip of a bimorph working in the 31 
mode and the applied electric field was observed for various piezoelectric actuators by 
Wang et al. (1999) who attributed this nonlinearity to an increase of 31d  with the applied 
electric field.  Note that the physical nonlinearity was reported in this paper, although the 
electric field was relatively low (150 V/mm).    
 
The effect of physical nonlinearity on shape control of composite laminated beams was 
considered by Achuthan et al. (2001).  As follows from this study, the voltage required to 
control the shape of the beam is significantly reduced when physical nonlinearity of 
piezoelectric patches on the beam surface is taken in to account.   
 
Notably, the electrostrictive response can include higher-order nonlinear terms, in 
addition to the well-known quadratic relationship between the stress and the electric field 
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(Sherrit et al., 1999).  However, these nonlinear contributions become essential only in 
the case of very high applied fields.   
 
Explicit expressions for piezoelectric coefficients 3331 ,dd  as functions of the peak-to-
peak voltage amplitude were obtained for a class of materials by Williams (2004).  These 
relationships involved quadratic power of the peak-to-peak voltage, reflecting physical 
nonlinearity. 
 
Representative empirical equations including physical nonlinearity are shown below.  For 
example, the results communicated by Barrett (2002) regarding the response of G-1195 
piezoceramics under the electric field of up to 600 V/mm include the following nonlinear 
relationship between the microstrain and the electric field (31 effect): 
 

( ) 62 10*000243.0227.0 −+= zz EEε        (1)    
 
Priya et al. (2001) found that the relationship between the coefficient 31d and the squared 
applied elastic strain is linear.  In particular, for soft PZT-5A, this relationship was 
obtained in the form 
 
 2410

31 10*12.110*03.2 ε−− +=d        (2) 
 
where the squared strain varied from zero to 2.8*10-7 and the piezoelectric coefficient 
was measured in C/N.  
 
The present paper concentrates on the investigation of physically nonlinear effects on the 
behavior of piezoelectric rods polarized in the axial direction.  Such problems are 
important in piezoelectric transducers (Fig. 1) used in underwater hydrophones, acoustic 
imaging and medical applications.  Typically, the behavior of piezoelectric rods and 1-3 
piezocomposites consisting of rods embedded in the matrix are studied using linear 
constitutive equations (Li and Sottos, 1995, 1996a,b, Sigmund et al., 1998).  Recent 
papers by Tan and Tong (2001, 2002) extended the study to the physically nonlinear 
static formulation.  Physically nonlinear dynamic problems were also considered by 
Wagner (2003, 2004) and Wagner and Hagedorn (2003).  A related problem of linear 
vibrations of thin piezoceramic discs accounting for coupled axial, tangential and radial 
modes was analyzed by Huang et al (2004).  In the present paper, a unified formulation is 
presented enabling us to identify essential physically nonlinear effects and conduct a 
comprehensive analysis of the problem.  As follows from this paper, physically nonlinear 
effects may significantly influence the dynamic response of a piezoelectric rod.   
 
Analysis 
 

1. Derivation of physically nonlinear constitutive relationships for an orthotropic 
cylindrical piezoelectric rod subject to an electric field in the axial direction 
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Consider a cylindrical rod shown in Fig. 2 subject to an electric field in the z-direction.  
For convenience, the following notations employed in the subsequent discussion are 
introduced at this phase.  The cylindrical coordinate axes θ,, rz  identified in Fig. 1 are 
also denoted as 3, 1 and 2, respectively.  The problem being axisymmetric, the 
circumferential displacement is equal to zero, while the axial and radial displacements are 
denoted by w  and u , respectively.   
 
The rod subject to a dynamic excitation induced by an electric field 3EEz =  experiences 
vibrations in the axial and radial directions, while tangential motion occurs only if 
axisymmetry is violated by adjacent structures.  If the side surface of the rod is not 
attached to other structural elements of if the adjacent structure is quasi-isotropic, the rod 
retains a cylindrical shape during these vibrations.  Therefore, shearing stresses and 
strains are equal to zero.  In the present analysis, the rod is assumed ‘anchored” at the 
plane 0=z , preventing axial displacements at this location.   
 
The constitutive relations are derived following the approach by Maugin et al. (1992).  
Note that notations used in this book differ from a number of references where similar 
relationships were derived, such as Joshi (1992).  However, accounting for this difference 
does not result in a physically different formulation. 
 
The energy density obtained neglecting geometric nonlinearities is (Maugin et al., 1992):  
 
 

ααβααβααβααβ εεεεεεεε nmmnpnmmnpnmmnmmmm EElEEEEEEeEeC
2
1

6
1

2
1

2
1

2
1

−−−−−=Ψ

           (3) 
 
where 

αβC  are elastic stiffness constants;  

αε  are strains; 

αme  are piezoelectric constants; 

mE  are components of electric field in the corresponding direction; 

αβme  are electroelastic constants; 

mnε  and mnpε  are dielectric coefficients (permittivity and third-order dielectric 
coefficients, respectively); 
 αmnl  are electrostrictive coefficients. 

 
The constitutive relations yielding stresses and electric displacements are obtained as 
 

m
m E

D
∂
Ψ∂

−=
∂
Ψ∂

= ,
α

α ε
σ        (4) 
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This yields the following expressions for the components of the stress tensor and electric 
displacements: 
 

nmmnmmmm EElEeEeC αβαβαβαβα εεσ
2
1

−−−=      (5) 

 
            
      (6) 
 

The terms underlined in the right side of these equations are retained in the linear 
formulation.  As indicated above, numerous authors implicitly account for the 
nonlinearity by using variable coefficients of these terms, dependent on various factors. 
Note that the quadratic function of strain in (6) can usually be neglected even if the 
problem is geometrically nonlinear.   
 
In the problem considered in this paper, we are concerned with a dynamic response of the 
rod to the applied field in the axial direction, i.e. ( ) ( )tEtE z=3 .  Accordingly, the nonzero 
elements of the tensor of stress given by (5) are  
 

 
 
(7) 
 
 

 
2. Analysis of uncoupled axial vibrations 

 
This section presents the solution of the problem of uncoupled axial vibrations of a 
piezoelectric rod activated by a periodic in time electric field in the axial (z) direction. 
The solution is obtained by assumption that the effect of radial vibrations on the axial 
motion can be disregarded.   
 
Two methods of the analysis are considered, namely the Generalized Galerkin procedure 
and the Lagrange equation.  In particular, the former procedure is different from the 
conventional and well known Galerkin procedure in enabling one to address the issue of 
boundary conditions that cannot be satisfied by expressions chosen to represent 
displacements.  Although this procedure is relatively little known, the solutions utilizing 
it have been published (Simitses, 1986; Houbolt and Brooks, 1958).  The choice of the 
appropriate sign for the term incorporating the boundary conditions into the Generalized 
Galerkin formulation can only be established if the equations of equilibrium and the 
boundary conditions are derived from the Hamilton principle.  Accordingly, the analysis 
begins with the consideration of this principle in application to the present problem. 
 
2.1. Derivation of the equation employed in the Generalized Galerkin procedure from the 
Hamilton principle  
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The Hamilton principle applied to the problem of axial vibrations of a piezoelectric rod 
where the motion is excited by an electric field and external mechanical forces are absent 
is formulated as 
( )∫ =−

1

0

0
t

t
dtTV δδ          (8) 

 
where the integration is conducted over an arbitrary interval of time 10 ttt << , V is the 
strain energy, and T is the kinetic energy.   
 
The strain energy accumulated in the rod that experiences vibrations in the axial direction 
is given by    

 

∫ ∫ ∫=
π

θδεσδ
2

0 0 0

a h

zz rdzdrdV         (9) 

 
where a  is the radius of the rod, and the variation of the axial strain is related to the 
variation of the axial displacement w by 

( ) zz w ,δδε =           (10) 
 
The substitution of (10) into (9) and the integration by parts yields 
 

( ) ( ) ( ) dtwdzwwaV
t

t

h

zzzzhzz∫ ∫ ⎥
⎦

⎤
⎢
⎣

⎡
−−= ==

1

0 0
0

2 , δσδσδσπδ      (11) 

 
The variation of the kinetic energy is  
 

∫=
h

dzwwmaT
0

2 &&δπδ          (12) 

 
where m  is the mass density of the rod material. 
  
Integrating this expression by parts one obtains  
 

( ) ( )∫ ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−= ==

h t

t
tttt dzwdtwwwwwmaT

0

2
1

0

01
δδδπδ &&&&      (13) 

 
The first two terms under the integral in the right side of (13) can be taken equal to zero 
assuming that ( ) ( ) 001 ==== ttwttw δδ (Whitney, 1987).  Then substituting the 
variations of strain and kinetic energies given by (11) and (13), respectively, into (8) one 
obtains both the equation of motion as well as the boundary conditions that are actually 
well known (the reason for the previous derivation is explained below): 
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 0, =− zzwm σ&&      (14) 

 
 

     (15) 
 
The boundary conditions that can be specified from (15) reflect that in the present 
problem the cross section 0=z  is prevented from axial motion, so that ( ) 00 ==zwδ .  
The axial stresses at the free end of the rod should be equal to zero, i.e. ( ) 0== hzzσ . 
 
In the case where it is impossible to satisfy the stress boundary conditions, following the 
Generalized Galerkin procedure, the displacements can be sought in the form 
 
( ) ( ) ( )∑=

i
ii tTzZtzw ,          (16) 

 
and the system of  equations of motion with respect to the functions of time ( )tTi  
available from (8) by substituting (11) and (13) is 
 

( ) ( ) ( ) ( ) 0,
0

==−−∫ hZhzdzzZwm iz

h

izz σσ &&       (17) 

 
It is observed that the sign of the second term in (17) would not be evident without the 
previous derivation. 
 
2.2 Analysis using normal modes to represent the motion 
 
The motion considered in this section is represented in terms of normal modes of axial 
vibrations of the rod.  Two methods employed to analyze the problem are the Generalized 
Galerkin procedure and the Rayleigh-Ritz method.  As is shown below, these methods 
yield identical systems of equations of motion. 
 
The axial free vibrations of a rod with the boundary conditions specified above are 
represented in the form 
 

( ) ( )∑ +=
i

iiii h
zitAtAtxw

2
sincossin, 21

πλλ       (18) 

where i  is a natural odd number, kiA  are constants of integration specified from the 

initial conditions, and 
m

C
h

i
i

33

2
πλ =  is a natural frequency.   

  
2.2.1. Generalized Galerkin procedure 

00:
00:0

===
===

worhz
worz

z

z

δσ
δσ



 13

 
Following the Galerkin procedure, the axial displacements should be chosen in the form 
of series satisfying the boundary conditions.  However, it appears impossible to choose 
such series, while satisfying the conditions both at the “anchored” cross section 0=z  as 
well as at the free end of the rod hz = .  Therefore, the solution is sought in the form  
 

( )
h
zihtWw

i
i 2

sin π∑=          (19) 

 

The substitution of (19) into (17) where 
h
ziZi 2

sin π
=  yields a system of uncoupled 

equations.  In particular, the i-th equation of this system is 
 

( )
2

sin
2
1

82
2

33333

22

33333

2 ππ iElEeWiEeCWmh
zzizi ⎟
⎠
⎞

⎜
⎝
⎛ +=−+&&    (20) 

 
 
2.2.2. Solution by the Lagrange equation 
 
The energy density within a rod vibrating in the axial direction can be obtained from (3): 
 

zzzzzzzzz ElEEEeEeC εεεεεε 2
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Note that the terms dependent only on the electric field that are underlined in (21) do not 
affect the subsequent solution and are omitted.  
 
If axial vibrations of the rod are represented by series (19), the Lagrange equation  for the 
n-th term of these series is 
 

0=
∂
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+
∂
∂
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where the kinetic and strain energy contributions are given by 
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π

θ
2

0 0 0

2

2
1 h a

rdrdzdwmT &          (23) 

and 
 

∫ ∫ ∫Ψ′=
π

θ
2

0 0 0

h a

rdrdzdV          (24) 

 
respectively. 
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The substitution of (19) into (21, 23, and 24) and the subsequent application of the 
Lagrange equation (22) yields the same system of equations of motion as that obtained by 
the Generalized Galerkin procedure, i.e. (20). 
 
2.3 Analysis using power series to represent the motion 
 
The solution can also be sought in the power series, i.e. 
 

( )∑
=

=
1j

j
j ztWw          (25) 

 
where ( )tW j  are unknown functions of time ( j are natural numbers that can be both even 
and odd). 
 
2.3.1. Generalized Galerkin procedure 
 
It is immediately obvious that series (25) satisfy the boundary condition ( ) 00 ==zw , 
while the condition of zero axial stress at the free end is violated.  Accordingly, the 
Generalized Galerkin procedure implies that the n-th equation of the system of equations 
of motion is 
 

( ) ( ) 0,
0

==−−∫ n
z

h
n

zz hhzdzzwm σσ &&        (26) 

 
Note that (26) was written accounting for the axisymmetry of the problem and 
accordingly, avoiding the integration in the circumferential direction.   
 
 The substitution of the axial stress from (7) and axial displacements presented by (25) 
into (26) and using the strain-displacement relationship zz w,=ε  yields the system of 
coupled equations of motion.  The n-th equation is 
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2.3.2. Solution by the Lagrange equation 
 
The energy density within a rod vibrating in the axial direction is given by (21).  If axial 
vibrations of the rod are represented by the power series (25), the Lagrange equation 
yields the following system of equations 
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           (28) 
It is easy to show that the systems of equations (27) and (28) are identical, i.e. the 
Generalized Galerkin procedure and the Lagrange equation yield identical equations of 
motion, similar to the case where the mode shape of vibration was represented by normal 
modes. 
 
2.4. Solution of equations of axial motion  
 
The systems of equations (20) and (28) can be integrated if the electric field is a known 
function of time.  In the present work it is assumed that this function is periodic, i.e.  
 

( ) tEtEz ωcos=          (29) 
 
Then the substitution of (29) into one of the above-mentioned systems of equations yields 
a system of equations of motion that can be solved either analytically or numerically. For 
example, the system (28) becomes  
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The systems of equations (30) and (31) represent systems of nonhomogeneous Mathieu-
Hill equations.  Such equations were encountered since the first part of the last century 
(Strutt, 1932; McLachlan, 1947) when studies were often limited to homogenous 
equations that are employed to solve problems of dynamic or parametric stability of 
structures (Bolotin, 1964).  A typical problem where the analysis is reduced to a 
nonhomogeneous Mathieu equation is the motion of a rod with initial imperfection 
subject to a periodic in time axial force (Bolotin, 1964).  A related problem is that of 
forced vibrations of a rod subject to an eccentrically applied driving force.  In addition to 
the classical monograph of Bolotin (1964), a number of investigations have been 
concerned with the problem of an interaction between forced and parametric vibrations 
(Hsu and Cheng, 1974; Nguyen, 1975; Troger and Hsu, 1977; HaQuang et al., 1987a,b; 
Plaut et al., 1990; Nguyen and Ginsberg, 2001).  
 
The analytical solution of the system of equations (30) can be sought in the form of 
trigonometric time series: 
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where rjj AA ,0  and pjB  are unknown coefficients.  These coefficients can be determined 
by substituting the series (32) into (30) or (31), equating the coefficients at the same 
trigonometric functions of time and solving the system of resulting linear algebraic 
equations with respect to rjj AA ,0  and pjB .  The solution of (31) can be obtained by the 
same approach.  Details of the straightforward solution of the system of linear equations 
with respect to rjj AA ,0  and pjB  are omitted here for brevity.  
 
If the axial displacement is assumed to be a linear function of the distance from the cross 
section 0=z , i.e. 1== jn , and the electric field is given by (29), the system (30) is 
reduced to a single equation 
 

 
   (33) 
 

The corresponding equation for the solution representing the motion in terms of normal 
modes is available from (31): 
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As is shown below, single-term solutions that result in equations (33) and (34) are always 
accurate if the driving frequency ω  is smaller than the fundamental frequency of the rod.  
 
The systems of equations (30) and (31) or equations (33) and (34) could be simplified in 
case of numerous piezoelectric materials as shown below.  It can be observed that 
physical nonlinearity in the expression for the energy density as given by (21) results in 
terms proportional to 333e  and 333l .  Consider for example, equation (34) where it is 
instructive to compare the magnitude of the following coefficients: 
 

Eek

Elk

EWek

333

2
3332

13331

4
1

=

=

=

          (35) 

 
Note that a physically linear formulation can be obtained by setting 021 == kk .   
 
Two materials chosen for the following comparison and considered in numerical 
examples are PZT-5H and PZN-4.5%PT (Tan and Tong, 2001, 2002).  In addition, 
LiNbO3 (Maugin, et al., 1992) is used in the analysis of the coefficients (35).  The 
magnitude of typical electric fields usually varies from zero to 2.0 MV/m (Maugin et al., 
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1992).  The values of material constants needed to evaluate the coefficients in (35) are 
listed in Table 1. 
 
Table 1. Material constant of representative piezoelectric materials 
 
Material ( )233 m

Ce  ( )2333 m
Ce  ( )GPaC33  ( )m

Fl333  

PZT-5H 24.54 (or 31.02) 5.7*104 108.0 -21.21*10-6 
PZN-4.5%PT 12.1 (or 13.02) 4.2*104 89.0 -1.61*10-6 
LiNbO3 1.3 -17.3 24.5 -2.76*10-9 
 
Using a high electric field, i.e. 2.0 MV/m, since it results in a stronger nonlinear effect, 
one obtains the values of the coefficients in (35) listed in Table 2. 
 
Table 2. Coefficients of the equations of motion for representative materials 
 
Material 1k  2k  3k  
PZT-5H 11.4*1010W1 -2.12*107 5.09*107 
PZN-4.5%PT 8.9*1010W1 -1.61*106 2.42*107 
LiNbO3 -34.6*106W1 -2.76*103 2.6*106 
 
Note that 1W  in Table 1 is nondimensional and the units of all coefficients are C*V/m3.  
A comparison of the coefficients in Table 2 yields the conclusion that the terms 
proportional to the squared electric field, i.e. 2k , can be neglected if the electric field 
remains within certain limits.  In particular, these terms can be neglected for PZN-
4.5%PT and for LiNbO3 even at 2.0MV/m, while the term proportional to 2k  can be 
neglected for PZT-5H if the field remains smaller than 0.5MV/m since at this electric 
field 2k  is an order of magnitude higher than 3k . Accordingly, if the electric field is 
below the limits specified above, the systems of equation (30) and (31) as well as 
equations (33) and (34) can be simplified.  In particular, the latter equations are reduced 
to a nonhomogeneous Mathieu equation: 
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where the fundamental frequency, the parametric loading coefficient and the forcing 
function are 
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where the subscripts identify the solutions in power series (p) and in normal modes (n). 
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As will be shown below, viscous damping is essential in the case where the driving 
frequency is close to the fundamental frequency of the rod.  The corresponding expansion 
of (36) is  
 

tptWWWW ωωµλλβ coscos2 1
2

1
2

11 =−++&&       (38) 
 
where m

c=β , c being a damping coefficient (for both eqns. 33 and 34).  The value of 

the damping coefficient can be evaluated from published data for a quality factor Q  as 
 

Qcc cr2=           (39) 
 
where crc is a critical damping coefficient of the rod experiencing axial vibrations. 
 
Equations (36) or (38) are similar to the equation for lateral vibrations of an imperfect rod 
subjected to a periodic in time axial force (Mettler, 1941; Bolotin, 1964).  Following 
these references, the solution for the steady state vibrations in the vicinity of the 
secondary region of parametric instability, i.e. in the case where the frequency of the 
electric field is close to the fundamental frequency can be adequately predicted retaining 
only three terms in series (32): 
 

tBtAAW ωω sincos 2201 ++=          (40) 
 
Using (40), the ratio of the amplitude of vibrations neglecting physical nonlinearity, i.e., 
using 0=µ  in (36), to the corresponding amplitude accounting for the physically 
nonlinear effect is obtained in the form 
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In the presence of viscous damping, this ratio is  
 

( ) ( )
( ) ⎥⎦

⎤
⎢⎣
⎡ −

−−

−=

1
1

21

22

22
2

2

λ
ωλ

λ
ωβ

λ
ω

µR        (42) 

 
 

3. Solution for coupled axial-radial axisymmetric vibrations by the Generalized 
Galerkin procedure 
 
Equations of the axisymmetric motion of the rod are 
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where the terms in the right side represent inertias in the radial and axial directions. 
 
The solution must satisfy the following conditions: 
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It is evident that the exact satisfaction of the static (stress) conditions in (44) is 
impossible. 
 
The following approach to the solution utilizes the Generalized Galerkin procedure.  For 
example, the displacements can be sought in the form of power series that satisfy the first 
two conditions (44): 
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The Generalized Galerkin procedure yields a set of equations.  In particular, the n-th 
equation of motion in the radial direction (j=n) is  
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The n-th equation of the axial motion obtained by this method becomes 

 
 

           (47) 
The substitution of the series (45) into the constitutive relations (7) and the subsequent 
use of the Generalized Galerkin procedure (46) and (47) yield a system of coupled time-
dependent differential equations for ( )tU j  and ( )tW j .   
 
In the case where the solution is sought using normal modes of motion as generalized 
coordinates, series (45) are replaced with 
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where i  is an odd number.  In this case, the Generalized Galerkin procedure implies 
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and 
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If the driving electric field is a periodic and harmonic function of time as is assumed in 
this paper (see Eqn. 29), the solution of the system of time-dependent equations of 
motion available from (46), (47) or from (48), (49) can be sought in the form of series 
 

 

           (51) 
      
 
Numerical results and discussion 
 
The following results were obtained for two representative materials, i.e. PZT-5H and 
PZN-4.5%PT, using data from Table 1 (the values of 33e  shown without brackets were 
employed in calculations).  In the examples presented below the amplitude of the electric 
field was chosen equal to 2.0MV/m and 0.5MV/m for PZN-4.5%PT and PZT-5H, 
respectively. Accordingly, the terms proportional to the coefficient 2k could be neglected. 
Notably, even in the case of a relatively low electric field for PZT-5H the effect of 
physical nonlinearity was significant as is shown in the following examples. 
 
The effect of physical nonlinearity on the accuracy of the prediction of vibrations of a 
piezoelectric rod subject to electric fields with the driving frequency close to the 
fundamental frequency of the rod is illustrated in Figs. 3 and 4.  The horizontal axes in 
these figures represent λ

ω=F , so that in the absence of damping the amplitude ratio 

becomes infinite at the resonant frequency according to (41).  As follows from Figs. 3 
and 4, neglecting physical nonlinearity may cause a significant numerical error in the 
vicinity of the fundamental frequency, particularly at high electric fields.  However, even 
at a relatively low electric field (Fig. 3), quantitative differences between physically 
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nonlinear and linear solutions cannot be disregarded if 1→F .  It is noted that each of the 
curves in Figs. 3 and 4 has extreme values 0=R  and ∞=R , but some of these values 
could not be reflected in the figures due to a difficulty in graphing the results for the 
corresponding pinpointed values of F .  Nevertheless, all essential trends are accurately 
identified in these figures. 
 
The effect of damping on the ratio of amplitudes of linear and nonlinear vibrations is 
elucidated in Figs. 5 and 6.  The quality factor employed to generate these results was 
chosen based on published data for PZT-5H.  This factor was also applied to PZN-
4.5%PT since damping data for this material is not available. However, independent of 
the exact damping coefficient value, it is evident that the qualitative effect of damping is 
present only in the immediate vicinity of the fundamental frequency (the same conclusion 
is valid for other resonant frequencies, though the effect becomes weaker at higher modes 
of motion).  The effect of damping on vibrations of physically nonlinear piezoelectric 
rods is further elucidated in Figs. 7 and 8.  As follows from these figures, the amplitudes 
of vibration are almost unaffected by damping outside a very narrow spectrum of driving 
frequencies encompassing the fundamental frequency.  However, at the resonant 
frequency damping reduces the ratio of the amplitude of nonlinear vibrations with 
damping to that without damping (denoted RD in Figs. 7 and 8) to zero.  This is 
anticipated since the amplitude of undamped motion is infinite at the resonance.  
 
The previous results were generated using the normal mode approach.  Therefore, it is 
important to compare the solutions obtained by this method to the results generated by 
the power series approach.  Such comparison is shown in Figs. 9 and 10 where the ratio 
Rpq represents a ratio of the amplitudes of nonlinear vibrations obtained by the power 
series and normal modes approaches.  The interpretation of the results for nonlinear 
vibrations shown in these figures should account for the fact that two driving frequencies, 
one of them yielding a ratio Rpn=0 and the second corresponding to an infinite Rpn 
reflect the resonances of the rod by the corresponding solutions.  Naturally, the ratios Rpn 
exhibit abrupt variations within the resonance region. Outside the resonance region, the 
solutions are reasonably close to each other but the power series approach requires 
retention of more terms to accurately represent the motion. 
 
The limits of the accuracy of a one-term solution by the normal mode method are 
elucidated in Figs. 11 and 12.  As follows from these figures, the contribution of higher 
modes is negligible if the driving frequency is smaller than the fundamental frequency of 
the rod.  As the driving frequency increases, the contribution of the second normal mode 
becomes essential (it was shown that higher modes have a negligible effect in the range 
of frequencies considered in Figs. 11 and 12).  The increase of the contribution of the 
second mode is particularly pronounced in case of a high electric field.   
 
Finally, the multi-mode solutions for the nondimensional amplitude of physically 
nonlinear axial vibrations of piezoelectric rods within a broad range of driving 
frequencies are illustrated in Figs. 13, 14 and 15.  As is shown in these figures, the 
amplitudes of motion remain quite small, except for very narrow regions encompassing 
the resonant frequencies.  However, though geometric nonlinearity can be neglected 
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(with a possible exception of the above-mentioned regions), the physical nonlinearity 
should be accounted for as follows from the previous discussion.   
   
Conclusions 
 
The effect of physical nonlinearity on the dynamic response of piezoelectric rods 
polarized in the axial direction and subject to a harmonic electric field acting in this 
direction has been investigated.  Such problems are important in a number of applications 
employing piezoelectric transducers.  It is shown that physically nonlinear effects become 
more pronounced at higher fields.  Mathematically, the presence of physical nonlinearity 
results in additional terms in the system of equations of motion, so that these equations 
change from the equations for forced vibrations in the physically linear case to the mixed 
forced-parametric dynamic formulation (Mathieu-Hill equations).   
 
Physically nonlinear vibrations considered in the paper were investigated using the 
Generalized Galerkin procedure and the Lagrange equation.  The former formulation 
enabling us to incorporate all boundary conditions was derived from the Hamilton 
principle.  The solution was developed using two different systems of generalized 
coordinates, presenting the motion in terms of normal modes of free vibrations and in 
power series of the coordinates.  Remarkably, in each of these cases, the Generalized 
Galerkin procedure and the Lagrange equation yield identical equations of motion.  The 
solution considered in this paper was confined to uncoupled axial vibrations. However, 
the approach to the solution of a coupled axial-radial axisymmertic vibration problem has 
also been outlined. 
 
Vibrations of the rods driven by a harmonic electric field were numerically investigated 
in the vicinity of the fundamental frequency.  As follows from the representative 
examples, the error due to neglecting physical nonlinearity may be significant.  This error 
increases in the close vicinity to the resonant frequency.  The inaccuracy of the linear 
analysis becomes larger at higher electric fields.   
 
Damping has a noticeable effect on vibrations of piezoelectric rods in the vicinity of the 
resonant frequency.  However, the frequency range where the effect of damping is 
significant is very narrow.  Within this range, damping results in a finite amplitude of 
vibrations, while without damping, the amplitude is infinite, similarly to the situation 
encountered in the problem of forced vibrations. 
 
The analysis of vibrations based on using normal modes as generalized coordinates 
illustrates that higher modes have a negligible effect at the driving frequencies that are 
smaller than or close to the fundamental frequency of the rod.  If the driving frequency 
increases beyond the fundamental frequency, the effect of higher modes becomes more 
pronounced, particularly at high electric fields.  Therefore, a single-mode analysis can be 
safely employed only if the driving frequency remains below or close to the fundamental 
frequency, while a multi-mode analysis is recommended at higher values of the former 
frequency.  The multi-mode analysis conducted for axial vibrations in the range of 
driving frequencies including the first two natural frequencies illustrated the presence of 
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clearly identified peaks in the vicinity of the fundamental and second resonant 
frequencies.  Outside these peaks, the amplitude of motion remained small, even at high 
electric fields.   
 
A comparison between the results generated using normal modes and the solution 
employing power series to model the motion illustrated that these two solutions predict a 
qualitatively similar behavior. The exception was found in the vicinity of resonant 
frequencies where the solutions, while qualitatively similar, may predict significantly 
different amplitudes at the same driving frequency.  In general, it is anticipated that the 
normal mode solution is more accurate, but as the number of terms in the series 
representing the motion increases, the difference between the solutions should become 
smaller.   
 
Note that the effect of physical nonlinearity was also investigated as a part of the 
program on the development of Thunder actuators for QorTek, Inc. for control surfaces 
of minituarized munitions conducted by Dr. Birman.  The position of the control surface 
was changed by activating piezoelectric layers that caused an appropriate bending of this 
surface.  As was shown analytically (and confirmed in experiments), accounting for 
physical nonlinearity of piezoelectric actuator-layers resulted in a significant different 
response compared to a simplified approach neglecting such phenomenon.  The 
comparison between physically nonlinear and experimental results for representative 
control surfaces was favorable (see details in Appendix).    
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Appendix: Physically nonlinear effects in Thunder bimorphs used in control surfaces of 
miniature munitions (development work of Dr. Victor Birman conducted for QorTek, 
Inc). 
 
The following brief description refers to a program on the development of miniaturized 
munitions where Dr. Birman conducted the design and development work on bimorph 
Thunder actuators.  While details of the program cannot be disclosed due to the 
proprietary agreement, some results are shown here. 
 
The Thunder actuators considered in the program represented clamped surfaces with a 
central substrate bounded by piezoelectric layers that were in turn covered by thin cover 
sheets (Fig. 16).  The electric field applied in the z-direction resulted in the appropriate 
strains in the longitudinal direction (31 effect).  The results for on of two designs 
considered in the project are shown in Fig. 17.  A different length (L) considered in the 
computations reflected uncertainty about the unsupported length of the cantilevered beam 
clamped at one end. The curves marked as “Nonlinear” were generated using a physically 



 29

nonlinear solution. It is obvious that the results shown in Fig. 17, accounting for the 
effect of physical nonlinearity and using the length of the bimorph equal to 2.9 inches are 
in excellent agreement with the experimental data.   
 
 
 

 
 
 
 
Fig. 1. Piezoelectric transducers used in ultrasonic instrumentation systems (From: 
http://www.senscomp.com/lseries.htm and 
http://www.ndt-
ed.org/EducationResources/CommunityCollege/Ultrasonics/EquipmentTrans/characterist
icspt.htm). 
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Fig. 2. Cylindrical piezoelectric rod and the coordinate system adopted in the analysis. 
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Fig. 3. The ratio of the amplitude obtained without accounting for physical nonlinearity 
to the physically nonlinear counterpart as a function of the nondimensional frequency for 
a PZT-5H rod.  Damping is neglected.  The electric field corresponds to 0.1MV/m, 
0.3MV/m and 0.5MV/m for cases 1, 2 and 3, respectively.   
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Fig. 4. The ratio of the amplitude obtained without accounting for physical nonlinearity 
to the physically nonlinear counterpart as a function of the nondimensional frequency for 
a PZN-4.5%PT rod.  Damping is neglected.  The electric field corresponds to 1.0MV/m, 
1.5MV/m and 2.0MV/m for cases 1, 2 and 3, respectively.   
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Fig. 5. The ratio of the amplitude of a PZT-5H rod with a physically linear material 
behavior to the amplitude of the rod accounting for the physically nonlinear effect in the 
presence of damping. The quality factor is 65=Q .  The half-depth of the rod is 

mh 1.0= .  The electric field corresponds to 0.1MV/m, 0.3MV/m and 0.5MV/m for cases 
1, 2 and 3, respectively.   
 

1 

2 

3 



 33

 
 
 
Fig. 6. The ratio of the amplitude of a PZN-4.5%PT rod with a physically linear material 
behavior to the amplitude of the rod accounting for the physically nonlinear effect in the 
presence of damping. The quality factor is 65=Q .  The half-depth of the rod is 

mh 1.0= .  The electric field corresponds to 1.0MV/m, 1.5MV/m and 2.0MV/m for cases 
1, 2 and 3, respectively.  
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Fig. 7. The ratio of the amplitude of vibrations of a physically nonlinear PZT-5H rod with 
damping to the amplitude without damping as a function of the nondimensional 
frequency. The electric field is equal to 0.5MV/m. 
 
 

 
 
 
Fig. 8. The ratio of the amplitude of vibrations of a physically nonlinear PZN-4.5%PT 
rod with damping to the amplitude without damping as a function of the nondimensional 
frequency. The electric filed is equal to 2.0MV/m. 
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Fig. 9. The ratio of the amplitude of vibrations obtained using power series to the 
amplitude obtained using normal modes as a function of the nondimensional frequency 
for a physically nonlinear PZT-5H rod. Three curves corresponding to the electric field 
equal to 0.1MV/m, 0.3MV/m and 0.5MV/m practically coincide. 
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Fig. 10. The ratio of the amplitude of vibrations obtained using power series to the 
amplitude obtained using normal modes as a function of the nondimensional frequency 
for a physically nonlinear PZN-4.5%PT rod. The electric field corresponds to 1.0MV/m, 
1.5MV/m and 2.0MV/m for cases 1, 2 and 3, respectively.  
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Fig. 11. The ratio of the amplitude of motion corresponding to the second normal mode 
to that for the first normal mode as a function of the nondimensional frequency for a 
PZT-5H rod. The curves for the electric fields equal to 0.1MV/m, 0.3MV/m and 
0.5MV/m shown by solid, dotted and dashed lines, respectively, practically coincide. 
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Fig. 12. The ratio of the amplitude of the motion corresponding to the second normal 
mode to that for the first normal mode as a function of the nondimensional frequency for 
a PZN-4.5%PT rod. The electric field corresponds to 1.0MV/m, 1.5MV/m and 2.0MV/m 
for cases 1, 2 and 3, respectively. 
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Fig. 13. The nondimensional amplitude of axial vibrations of a PZT-5H rod (h=5mm) as 
a function of the nondimensional frequency.  
Electric field:    0.1MV.m;    0.3MV/m;                        0.5MV/m. 
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Fig. 14. The nondimensional amplitude of axial vibrations of a PZT-5H rod (h=25mm) as 
a function of the nondimensional frequency.  
Electric field:    0.1MV.m;    0.3MV/m;                        0.5MV/m. 
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Fig. 15. The nondimensional amplitude of axial vibrations of a PZN-4.5%PT rod 
(h=25mm) as a function of the nondimensional frequency.  
Electric field:    1.0MV.m;    1.5MV/m;                        2.0MV/m. 
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Fig. 16. Cross-section of Model V bimorph (cross section along the axis of the bimorph).
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17.  Comparison between theoretically predicted deflections of the tip of Model V 
for design 2 (linear and nonlinear results) with experimental data (From Design of 
Thunder Actuators: Estimate of Deformations and Analysis of a Discrepancy between the 
Analytical Results and Test Data, Report of Victor Birman, LLC to QorTek, Inc.)  
.  
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